
Virtuoso Infotech Pvt. Ltd.

OAuth 2.0

If a third party wanted access to an account, you’d give them your

password.

History

➢Apps store the user’s password.

➢Apps get complete access to a user’s account.

➢Users can’t revoke access to an app except by changing their

password.

➢Compromised apps might expose user’s password.

➢Many services implemented things similar to OAuth 1.0.

➢Each implementation was slightly different, certainly not compatible

with each other.

Problems

➢OAuth stands for “Open Authorization” .

➢An open standard protocol that provides simple and secure

authorization for different types of applications.

➢A simple and safe method for consumers to interact with protected

data.

➢Allows providers to give access to users without any exchange of

credentials Designed for use only with HTTP protocol.

What is OAuth?

➢OAuth is created by studying each of the proprietary protocols.

➢ It is flexible, compatible and designed to work with all applications

➢Provides a method for users to grant third-party access to their

resources without sharing their credentials.

➢Provides a way to grant limited access in terms of scope and duration.

Why OAuth?

➢More OAuth Flows to allow better support for non-browser-based

applications.

➢OAuth 2.0 no longer requires client applications to have cryptography.

➢OAuth 2.0 signatures are much less complicated.

➢OAuth 2.0 Access tokens are "short-lived".

➢OAuth 2.0 is meant to have a clean separation of roles.

Difference between OAuth 1.0 and OAuth 2.0

OAuth 2.0 flow

Basic Concepts

OAuth defines four roles:

➢Resource owner (the user)

➢Resource server (the API):must be able to accept and validate

access tokens and grant the request.

➢Authorization server: Shows Auth prompt, grants access token etc.

➢Client (the third-party app):

1. Confidential Clients(web apps)

2. Public Clients

Roles

Permissions asked by client

when requesting a token.

Scopes

Tokens

➢ Short- lived token used by

Client to access Resource

Server (API)

➢ No client authentication

required (Public Clients)

➢ Usually can’t be revoked

Access Token (Required)

➢ Long- lived token that is used by

Client to obtain new access

tokens from Authorization Server.

➢ Usually requires Confidential

Clients with authentication

➢ Can be revoked

Refresh Token (Optional)

➢The client_id is a public identifier for apps.

➢ It’s best that it isn’t guessable by third parties.

➢ Implementations use something like a 32-character hex string.

➢ It must also be unique across all clients.

Client ID

➢The client_secret is a secret known only to the application and the

authorization server.

➢ It must be sufficiently random to not be guessable.

➢Generate a secure secret by using 256-bit value and converting it to

a hexadecimal representation.

Client Secret

Grant Types

➢ Web-server apps – authorization_code

➢ Browser-based apps – implicit

➢ Username/password access – password

➢ Application access – client_credentials

➢ Mobile apps – implicit

Web Server Apps - Authorization Code Grant

Create a “Log In” link

Link to:

https://facebook.com/dialog/oauth?response_

type=code&client_id=YOUR_CLIENT_ID&redirect_uri=REDIRECT_U

RI&scope=email

➢ client_id:It is the identifier for your app

➢ response_type: is set to code indicating that you want an authorization

code as the response.

➢ redirect_uri (optional):This is the URL to which you want the user to be

redirected after the authorization is complete.

➢ scope (optional):Include one or more scope values to request additional

levels of access.

➢ state (recommended):The state serves as a parameter.

Authorization Grant Parameters

User visits the authorization page

Continue..

➢ On success, user is redirected back to your site with auth code.

https://example.com/auth?code=AUTH_CODE_HERE

➢ On error, user is redirected back to your site with error code.

https://example.com/auth?error=access_denied

Server exchanges auth code for an access token

➢ Your server makes the following request

POST

https://graph.facebook.com/oauth/access_token

Post Body:

grant_type=authorization_code&code=CODE&redirect_uri=REDIRECT

_URI&client_id=YOUR_CLIENT_ID

&client_secret=YOUR_CLIENT_SECRET

Exchanging code for an access token

➢ Your server gets a response like the following

{

"access_token":"RsT5OjbzRn430zqMLgV3Ia", "token_type":"bearer",

"expires_in":3600, "refresh_token":"e1qoXg7Ik2RRua48lXIV"

}

➢ or if there was an error

{

"error":"invalid_request"

}

Browser-Based Apps - ImplicitGrant

Create a “Log In” link

Link to:

https://facebook.com/dialog/oauth?response_type=token&client_id=CLIE

NT_ID &redirect_uri=REDIRECT_URI&scope=email

User visits the authorization page
https://facebook.com/dialog/oauth?response_type=token&client_id=2865368

247587&redirect_uri=everydaycity.com&scope=email

Continue..

➢ On success, user is redirected back to your site with the access

token in the fragment

https://example.com/auth#token=ACCESS_TOKEN

➢ On error, user is redirected back to your site with error code

https://example.com/auth#error=access_denied

Browser-Based Apps

➢ Use the “Implicit” grant type

➢ No server-side code needed

➢ Client secret not used

➢ Browser makes API requests directly

Username/Password - PasswordGrant

Password Grant

➢ For trusted clients only (first-party apps).

➢ Only appropriate for your service’s

website or your service’s mobile apps.

Continue..

POST

https://api.example.com/oauth/token

Post Body:

grant_type=password&username=USERNAME&password=PASSWORD

&client_id=YOUR_CLIENT_ID&client_secret=YOUR_CLIENT_SECRET

Response:

{

"access_token":"RsT5OjbzRn430zqMLgV3Ia","token_type":"bearer,

"expires_in":3600, "refresh_token":"e1qoXg7Ik2RRua48lXIV"

}

Application Access - Client CredentialsGrant

Client CredentialsGrant

POST

https://api.example.com/1/oauth/token

Post Body:

grant_type=client_credentials&client_id=CLIENT_ID&client_secret=YO

UR_CLIENT_SECRET

Response:

{

"access_token":"RsT5OjbzRn430zqMLgV3Ia",

"token_type":"bearer", "expires_in":3600,

"refresh_token":"e1qoXg7Ik2RRua48lXIV"

}

Mobile Apps - ImplicitGrant

Redirect back to your app

➢ Facebook app redirects back to your app using a custom URI

scheme.

➢ Access token is included in the redirect, just like browser-based

apps.

fb2865://authorize/#access_token=BAAEEmo2nocQBAFFOeRTd

Mobile Apps

➢ Use the “Implicit” grant type

➢ No server-side code needed

➢ Client secret not used

➢ Mobile app makes API requests directly

➢There are two ways API servers may accept Bearer tokens.

1. As a Header parameter.

2. As a Body parameter.

➢Passing in the access token in an HTTP header:

POST /resource/1/update HTTP/1.1

Authorization: Bearer RsT5OjbzRn430zqMLgV3Ia"

Host: api.authorization-server.com

description=Hello+World

Making Authenticated Requests

➢ If the service accepts access tokens in the post body, then you can

make a request like the following:

POST /resource/1/ HTTP/1.1

Host: api.authorization-server.com

access_token=RsT5OjbzRn430zqMLgV3Ia

&description=Hello+World

Continue..

Common OAuth 2.0 Security Issues

➢ Too many inputs that need validation

1. Token hijacking with CSRF

• Always use CSRF token with state parameter .Leaking

authorization codes or tokens through redirects

• Always whitelist redirect URIs and ensure proper URI validations

2. Token hijacking by switching clients

• Bind the same client to authorization grants and token requests

➢ Leaking client secrets

Thank You!

Virtuoso InfoTech Pvt. Ltd.
4th Floor, Victory Landmark, Opp. D-
Mart, Behind Dominos Pizza,
Baner, Pune.

+91 80870 81318
support@virtuositech.com

www.virtuosoitech.com

http://virtuosoitech.com/

